Sequential cocatalyst decoration on BaTaO₂N towards highly-active Z-scheme water splitting #### List of the authors Zheng Wang^{1,2,9}, Ying Luo^{3,9}, Takashi Hisatomi¹, Junie Jhon M. Vequizo¹, Sayaka Suzuki⁴, Shanshan Chen¹, Mamiko Nakabayashi⁵, Lihua Lin¹, Zhenhua Pan¹, Nobuko Kariya⁶, Akira Yamakata⁷, Naoya Shibata⁵, Tsuyoshi Takata¹, Katsuya Teshima^{1,4*} and Kazunari Domen^{1,8,*} #### Affiliation and full postal address - Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553, Japan - Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China - 3. Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan - Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan - Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan - Science & Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan - Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan - 8. Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan - 9. These authors contributed equally: Zheng Wang and Ying Luo - * E-mail: domen@shinshu-u.ac.jp; teshima@shinshu-u.ac.jp # **Supplementary Table S1 | Representative Z-scheme water splitting systems** | HEP ^a | OEP ^b | Electron
mediator | Reaction solution | Gas evolution rates ^c (μmol h ⁻¹) | Efficiency ^d | |---|--|--------------------------|--------------------------------|--|------------------------------------| | Pt/SrTiO ₃ :Cr/Ta ¹ | PtO _x /WO ₃ | $\mathrm{IO_3^-/I^-}$ | H ₂ O | H ₂ : 1.8
O ₂ : 0.9 | AQY: 0.1% at 420 nm | | $Ru/SrTiO_3:Rh^2$
(BG = 2.3 eV) | ${ m BiVO_4}$ | Fe^{3+}/Fe^{2+} | H_2SO_4 solution $pH = 2.4$ | H ₂ : 122
O ₂ : 61 | AQY: 4.2% at 420 nm;
STH: 0.1% | | Ru/SrTiO ₃ :La,Rh ³ $(BG = 2.4 \text{ eV})$ | RuO2/BiVO4:Mo | Au layer | H ₂ O | H ₂ : 105
O ₂ : 52 | AQY 33% at 419 nm;
STH: 1.1% | | $Pt/TaON^4$ (BG = 2.5 eV) | PtO _x /WO ₃ | $\mathrm{IO_3^-/I^-}$ | H ₂ O | H ₂ : 24
O ₂ : 12 | AQY: 0.4% at 420 nm | | Pt/ZrO2/TaON5 (BG = 2.5 eV) | PtO _x /WO ₃ | $\mathrm{IO_3^-/I^-}$ | H_2O | H ₂ : 32.6
O ₂ : 15.6 | AQY: 6.3% at 420 nm | | Pt/MgTa2O6-xNy/TaON6 $(BG = 2.4 eV)$ | PtO _x /WO ₃ | $\mathrm{IO_3^-/I^-}$ | H ₂ O | H ₂ :108.3
O ₂ : 55.3 | AQY: 6.8% at 420 nm | | $Rh_{y}Cr_{2-y}O_{3}/ZrO_{2}/TaON^{7}$ $(BG = 2.4 \text{ eV})$ | Au/CoO _x /BiVO ₄ | Fe(CN)6 ^{3-/4-} | Na_3PO_4 solution $pH = 6.0$ | H ₂ : 130
O ₂ : 65 | AQY: 10.3% at 420 nm | | $Pt/IrO_2/Sm_2Ti_2S_2O_5^8$
(BG = 2.25 eV) | PtO _x /H-Cs-WO ₃ | I_3^-/I^- | $_{ m H_2O}$ | H ₂ : 4.1
O ₂ : 1.6 | STH: 0.003% | | $Cr_2O_3/Rh/La_5Ti_2Cu_{0.9}Ag_{0.1}S_5O_7:Ga^9$
(BG = 1.88 eV) | ${ m BiVO_4}$ | Au layer | $_{ m H_2O}$ | H ₂ : 22
O ₂ : 11 | AQY: 3.2% at 420 nm;
STH: 0.11% | | Pt/CuGaS210 (BG = 2.3 eV) | CoO _x /BiVO ₄ | Reduced graphene oxide | H ₂ O | H ₂ : 3.5
O ₂ : 1.7 | NR | |---|---|--------------------------------|------------------|--|-------------------------------------| | $Cr_2O_3/Pt/(ZnSe)_{0.5}(CuGa_{2.5}Se_{4.25})_{0.5}^{11}$ (BG = 1.79 eV) | CoO _x /BiVO ₄ | Au layer | H_2O | H ₂ : 3.8
O ₂ : 1.9 | AQY: 0.54% at 420 nm;
STH: 0.01% | | Pt/H ₄ Nb ₆ O ₁₇ sensitized with Dye ¹² (Full visible light absorption) | PtO _x /IrO ₂ /WO ₃ | $\mathrm{IO_3^-/I^-}$ | H ₂ O | H ₂ : 1.8
O ₂ : 0.9 | NR | | Pt/BaTaO2N13 (BG = 1.8 eV) | PtO _x /WO ₃ | $\mathrm{IO_3^-/I^-}$ | H ₂ O | H ₂ : 6.8
O ₂ : 3.2 | AQY: 0.1% at 420-440 nm | | $Pt/BaZrO_3-BaTaO_2N$ solid solution ¹⁴ (BG = 1.8 eV) | PtO _x /WO ₃ | $\mathrm{IO_3^-/I^-}$ | H ₂ O | H ₂ : 5.8
O ₂ : 2.5 | STH: 0.0067% | | $Pt/BaTaO_2N/Ta_3N_5$ heterostructure ¹⁵ (BG = 2.1 eV) | PtO _x /WO ₃ | $\mathrm{IO_3^-/I^-}$ | H ₂ O | H ₂ : 3.2
O ₂ : 1.6 | AQY: 0.1% at 420 nm | | $Pt/Ta_{3}N_{5}/BaTaO_{2}N \ heterostructure^{16}$ $(BG=2.1 \ eV)$ | PtO _x /WO ₃ | $\mathrm{IO_3^-/I^-}$ | H ₂ O | H ₂ : 4.8
O ₂ : 2.4 | NR | | Pt/BaTaO ₂ N nitrided with flux ¹⁷ (BG = 1.94 eV) | PtO _x /WO ₃ | $\mathrm{IO_3^-/I^-}$ | H ₂ O | H ₂ : 3.1
O ₂ : 1.6 | AQY: 0.06% at 420 nm | | $Pt/BaZrO_3-BaTaO_2N$ solid solution ¹⁸ (BG = 1.8 eV) | PtO _x /WO ₃ | $\mathrm{IO}_3^-/\mathrm{I}^-$ | H ₂ O | H ₂ : 5.5
O ₂ : 2.7 | AQY: 0.6% at 420-440 nm | a HEP: H₂-evolution photocatalyst. b O₂-evolution photocatalyst. Light source: 300 W Xe lamp $\lambda \ge 420$ nm. AQY: Apparent quantum yield; STH: Solar-to-hydrogen energy conversion efficiency; NR: Not reported. # Supplementary Table S2 | Representative photocatalytic half-reactions of BaTaO2N photocatalysts. | Photocatalyst materials | Cocatalyst modification | Reaction solution | Gas evolution rates ^a (µmol h ⁻¹) | Efficiency ^b | |---|-------------------------|----------------------------|--|-------------------------| | BaTaO ₂ N ¹³ (BG = 1.8 eV) | Pt | Methanol solution | H ₂ : 50 | NR | | $Ta_3N_5/BaTaO_2N$ heterostructure ¹⁶ (BG = 2.1 eV) | Pt | Methanol solution | H ₂ : 27 | NR | | Flux-assisted BaTaO ₂ N ¹⁷ $(BG = 1.94 \text{ eV})$ | Pt | Methanol solution | H ₂ : 16 | NR | | $BaZrO_3$ - $BaTaO_2N$ solid solution ¹⁹ (BG = 1.8 eV) | Pt | Methanol solution | H ₂ : 14 | AQY: 0.06% at 420 nm | | Flux-assisted BaTaO ₂ N ²⁰ (BG = 1.8 eV) | Pt | Methanol solution | H ₂ : 4. | NR | | $BaZrO_3$ - $BaTaO_2N$ solid solution ¹⁹ (BG = 1.8 eV) | IrO ₂ | AgNO ₃ solution | O ₂ : 8. | AQY: 0.03% at 420 nm | | BaTaO ₂ N:Mg ²¹ (BG = 1.88 eV) | CoO_x | AgNO ₃ solution | O ₂ : 40 | AQY: 2.6% at 420 nm | | Flux-assisted BaTaO ₂ N ²² $(BG = 1.8 \text{ eV})$ | CoO_x | AgNO ₃ solution | O ₂ : 699 | AQY: 11.9% at 420 nm | ^a Light source: 300 W Xe lamp $\lambda \ge$ 420 nm. ^b AQY: Apparent quantum yield; NR: Not reported. **Supplementary Figure S1** | Characterization of pristine BaTaO₂N (RbCl). a, XRD patterns. b, UV-vis DRS. c, SEM image. d,e, HRTEM images. e corresponds to the area marked with a square in d. Inset: crystal structure of BaTaO₂N along the [111] direction, as shown in f. f, Crystal structure of BaTaO₂N along the [111] direction, depicted using the Vesta programme²³. Supplementary Figure S2 | Photocatalytic H₂-evolution performance of Pt-modified BaTaO₂N (RbCl). Time courses of photocatalytic H₂ evolution on Pt-modified BaTaO₂N produced by three different methods. IMP, PD and IMP+PD denote Pt loading by impregnation-reduction, photodeposition, and sequential decoration, respectively. Conditions: Pt-modified BaTaO₂N (RbCl), 0.1 g; 10 vol% aqueous methanol solution, 150 mL; light source, 300 W Xenon lamp ($\lambda \geq$ 420 nm); reaction system, Pyrex top-illuminated vessel connected to closed gas-circulation system without evacuation of gas products. **Supplementary Figure S3** | Characterizations of recycled Pt-modified BaTaO₂N (RbCl) photocatalyst. a,b,c, XRD patterns (a), XPS spectra (Pt 4*f* and Ta 4*f*) (b) and SEM images (c) acquired from fresh and recycled Pt-modified BaTaO₂N (RbCl) used in photocatalytic H₂ evolution reaction from methanol solution. Pt content was 0.3 wt% in total by sequential decoration method (0.1 wt% by impregnation-reduction and 0.2 wt% by photodeposition). **Supplementary Figure S4** | **Morphology of Pt-modified BaTaO₂N (RbCl).** SEM images of Pt-modified BaTaO₂N produced by three different methods. IMP, PD and IMP+PD denote Pt loading by impregnation-reduction, photodeposition, and sequential decoration, respectively. # Supplementary Table S3 \mid Mass ratio of total Pt cocatalyst in Pt-modified BaTaO₂N photocatalysts analysed by ICP-AES. | Samples | Pt contents / wt% | | | |---|-------------------|--|--| | Pt(0.1%IMP)/BaTaO ₂ N | 0.09 | | | | Pt(0.3%IMP)/BaTaO ₂ N | 0.30 | | | | Pt(0.2%PD)/BaTaO ₂ N | 0.23 | | | | Pt(0.3%PD)/BaTaO ₂ N | 0.34 | | | | Pt(0.1%IMP+0.2%PD)/BaTaO ₂ N | 0.31 | | | ^a BaTaO₂N was synthesized with RbCl flux. **Supplementary Figure S5** | XPS spectra of pristine BaTaO₂N (RbCl) and Pt-modified BaTaO₂N (RbCl). a-f, Ba 3d, Ta 4f, O 1s, N 1s and Pt 4f spectra acquired from pristine BaTaO₂N (a), Pt(0.1%IMP)/BaTaO₂N (b), Pt(0.3%IMP)/BaTaO₂N (c), Pt(0.2%PD)/BaTaO₂N (d), Pt(0.3%PD)/BaTaO₂N (e) and Pt(0.1%IMP+0.2%PD)/BaTaO₂N (f). The Pt $4f_{7/2}$ peaks for all the Pt-modified BaTaO₂N samples were located at the binding energy for metallic Pt $(4f_{7/2}: 71.2 \text{ eV})^{24}$, indicating that the Pt cocatalysts deposited by the three methods were metallic. The peak position and intensity for Ba 3d, Ta 4f, O 1s and N 1s for Pt-modified BaTaO₂N samples were also in line with those for pristine BaTaO₂N. The surface components of the BaTaO₂N photocatalysts remained unchanged after Pt modification by the different methods and did not influence the photocatalytic activity. Supplementary Table S4 | Estimation of remaining photoexcited electrons in pristine BaTaO2N and Pt-modified BaTaO2N photocatalysts based on the transient absorption at 300 $\mu s.$ | Samples ^a | Absorbance at 300 µs ^b | Percentage of remaining electrons at 300 µs ^c | |---|-----------------------------------|--| | Pristine BaTaO ₂ N | 4.5×10^{-5} | 100% | | Pt(0.1%IMP)/BaTaO ₂ N | 2.0×10^{-5} | 45% | | Pt(0.3%IMP)/BaTaO ₂ N | 2.9×10 ⁻⁵ | 64% | | Pt(0.2%PD)/BaTaO ₂ N | 2.8×10^{-5} | 63% | | Pt(0.3%PD)/BaTaO ₂ N | 4.2×10 ⁻⁵ | 94% | | Pt(0.1%IMP+0.2%PD)/BaTaO ₂ N | 9.0×10 ⁻⁶ | 20% | ^a BaTaO₂N was synthesized with RbCl flux. ^b Absorbance at 300 μs was acquired from the decay of transient absorption in Fig. 3a. ^c The percentage of remaining electrons in each samples was calculated with respect to that in bare BaTaO₂N. **Supplementary Figure S6** | **TA measurements of pristine BaTaO₂N (RbCl) and Pt-modified BaTaO₂N (RbCl). a,b**, Time-resolved TA spectra of pristine BaTaO₂N (**a**) and Pt(0.1%IMP+0.2%PD)/BaTaO₂N (**b**). The left axis indicates the absorbance in the visible to NIR region from 20000 cm⁻¹ to 6000 cm⁻¹, and the right axis indicates the absorbance from 6000 cm⁻¹ to 1000 cm⁻¹. The transient absorption at around 15400 cm⁻¹ (649 nm, 1.91 eV) is attributed to photoexcited holes in the BaTaO₂N and Pt-loaded BaTaO₂N samples. The absorption intensity for Pt-loaded BaTaO₂N produced by two-step decoration is clearly higher than that for pristine BaTaO₂N at the same decay time, indicating that the lifetime of photoexcited holes is significantly longer in the Pt-loaded BaTaO₂N sample. Supplementary Figure S7 | Schematic of Pt cocatalyst deposition on BaTaO₂N by impregnation-reduction or photodeposition method. The impregnation-reduction method can produce evenly-distributed fine Pt particles for a certain small amount of Pt loading but causes aggregation of Pt particles for higher Pt content. The Pt cocatalyst can still efficiently capture photogenerated electrons from BaTaO₂N because of the intimate contact between the Pt particles and BaTaO₂N photocatalyst, based on the HRTEM and TAS results. However, the Pt-loaded BaTaO₂N exhibited lower photocatalytic H₂-evolution activity than the Pt-loaded BaTaO₂N prepared by the sequential decoration method. This is because aggregation of Pt particles resulted in insufficient catalytic sites, and the large Pt clusters could not efficiently supply the captured electrons for the proton reduction reaction. On the other hand, the Pt cocatalyst is deposited selectively on electron-accumulating sites of BaTaO₂N using the photodeposition method. However, Pt nanoparticles are preferentially localized on some active BaTaO₂N particles to form aggregates and have weak contact with BaTaO₂N, which decreases the amount of active catalytic sites and retards photoexcited electron transfer. Such drawbacks with the impregnation and photodeposition methods reduce the photocatalytic H_2 -evolution performance of $BaTaO_2N$. **Supplementary Figure S8** | **Modification of H₂-treated BaTaO₂N (RbCl) with Pt by photodeposition. a,b**, HRTEM images of BaTaO₂N treated by H₂ gas without introducing Pt, and loaded with 0.2 wt% Pt by photodeposition method, **b** corresponds to the area outlined by a square in **a**. Supplementary Figure S9 | Photodeposition of Pd on pristine BaTaO₂N (RbCl) and on Pt-impregnated BaTaO₂N (RbCl). a, XPS spectra (Pd 3d and Ba 3d) acquired from Pd-loaded BaTaO₂N samples. Pd(PD)/BaTaO₂N and Pd(PD)/Pt(IMP)/BaTaO₂N denote Pd loading on pristine BaTaO₂N and Pt-impregnated BaTaO₂N, respectively. Photodeposition of Pd on BaTaO₂N was conducted for 1 h. **b**, HRTEM images of the sample after photodeposition of Pd on Pt-impregnated BaTaO₂N for 3 h and EDS elemental analysis results for the selected areas in the HRTEM images. The XPS results revealed that the atomic ratio of Pd loaded on Pt-impregnated BaTaO₂N was higher than that loaded on pristine BaTaO₂N, indicating that the photodeposition of Pd on Pt-impregnated BaTaO₂N occurred more rapidly. This is because the Pt nuclei introduced on BaTaO₂N by impregnation-reduction functioned as electron-accumulation active sites for Pd photodeposition. Supplementary Figure S10 | Dispersion of Pt cocatalyst particles on BaTaO₂N photocatalysts. a,b,c, SEM images of Pt-modified BaTaO₂N (NaCl) (a), Pt-modified BaTaO₂N (CsCl) (b) and Pt-modified BaTaO₂N (KCl) (c). Pt content was 0.3 wt% in total by sequential decoration method (0.1 wt% by impregnation-reduction and 0.2 wt% by photodeposition). **Supplementary Figure S11** | XPS spectra of different Pt-modified BaTaO₂N photocatalysts. a-d, Ta 4f, Ba 3d, Pt 4f, O 1s, N 1s, Na 1s, Cs 3d, K 2p and Rb 3d spectra acquired from Pt-modified BaTaO₂N (NaCl) (a), Pt-modified BaTaO₂N (CsCl) (b), Pt-modified BaTaO₂N (KCl) (c), Pt-modified BaTaO₂N (RbCl) (d). Pt content was 0.3 wt% in total by sequential decoration method (0.1 wt% by impregnation-reduction and 0.2 wt% by photodeposition). XPS analysis reflects that the incorporation of alkali metal ion in the top surface layers was negligible for BaTaO₂N synthesized with RbCl, KCl or CsCl flux Supplementary Figure S12 | Photoexcited charge dynamics of bare and **Pt-modified BaTaO₂N photocatalysts. a**, Transient absorption decays corresponding to electron dynamics in bare and Pt-modified BaTaO₂N photocatalysts probed at 11000 cm⁻¹ (910 nm, 1.36 eV). **b**, Transient absorption decays corresponding to hole dynamics in bare and Pt-modified BaTaO₂N photocatalysts probed at 15400 cm⁻¹ (649 nm, 1.91 eV). **c**, Transient absorption decays corresponding to electron dynamics in bare BaTaO₂N photocatalysts probed at 11000 cm⁻¹ (910 nm, 1.36 eV). Pt content was 0.3 wt% in total by sequential decoration method (0.1 wt% by impregnation-reduction and 0.2 wt% by photodeposition). Comparing the absorption signals of deeply-trapped electrons between bare and Pt-modified BaTaO₂N samples, the largest decrease was observed for BaTaO₂N (RbCl) (Supplementary Fig. 12a). The absorption intensity of photoexcited holes decayed faster for BaTaO₂N (NaCl) and BaTaO₂N (CsCl) after Pt modification (Supplementary Fig. 12b), suggesting that the accelerated electron decay for these two samples was largely due to recombination with holes at defect states. The same hole dynamics for BaTaO₂N (KCl) with and without Pt loading indicate a possible balance in the number of electrons that were captured by Pt and recombined with holes. It is worth noting that the BaTaO₂N (RbCl) photocatalyst exhibited reduced hole decay when the Pt cocatalyst was decorated, indicating a low level of structural defects and mid-gap states in BaTaO₂N (RbCl) acting as recombination centers. Supplementary Figure S13 | Characterization of bare BaTaO₂N photocatalysts. a, XRD patterns. b, UV-vis DRS and optical photos. XRD patterns show the best crystallized BaTaO₂N was synthesized by RbCl flux-assisted nitridation²⁰. These BaTaO₂N materials synthesized with different fluxes exhibited similar brownish-red colour, which agrees well with the same absorption edges at around 650 nm in UV-vis DRS^{20,25}. The lowest background absorption for RbCl-assisted BaTaO₂N indicates the minimized defect densities (reduced Ta⁵⁺ species and anion vacancies) in BaTaO₂N crystal. # Supplementary Table S5 \mid Atomic ratios of elements in bare BaTaO₂N photocatalysts analysed by ICP-AES and ionic radii of alkali metals. | Sample | Ba (%) | Ta (%) | O (%) | N (%) | Alkali metal
(%) | Radius of alkali
metal (nm)ª | |-----------------------------|--------|--------|-------|-------|---------------------------|---------------------------------| | BaTaO ₂ N (NaCl) | 19.1 | 20.1 | 41.8 | 17.3 | 1.6 (Na) | 0.139 (Na ⁺) | | BaTaO₂N (KCI) | 18.9 | 19.5 | 41.5 | 19.6 | 0.5 (K) | 0.164 (K ⁺) | | BaTaO ₂ N (RbCl) | 20.0 | 20.4 | 40.2 | 19.3 | 4.6×10 ⁻² (Rb) | 0.172 (Rb+) | | BaTaO ₂ N (CsCl) | 19.7 | 20.0 | 40.9 | 19.4 | 2.3×10 ⁻⁴ (Cs) | 0.188 (Cs+) | ^a Coordination number was recognized as 12. Supplementary Figure S14 | Photocatalytic activity in half-reactions. The H_2 evolution reaction was carried out using Pt-modified BaTaO₂N in the presence of NaI as an electron donor. Conditions: Pt-modified BaTaO₂N (RbCl) photocatalyst, 0.1 g; 5 mM aqueous NaI solution, 150 mL; light source, 300 W Xenon lamp ($\lambda \geq 420$ nm). The O₂ evolution reaction was carried out using surface-treated WO₃ in the presence of NaIO₃ as an electron acceptor. Conditions: surface-treated WO₃ photocatalyst, 0.15 g; 20 mM aqueous NaIO₃ solution, 150 mL; light source, 300 W Xenon lamp ($\lambda \geq 420$ nm); reaction system, Pyrex top-illuminated vessel connected to closed gas-circulation system without evacuation of gas products. Supplementary Figure S15 | Photocatalytic performance for Z-scheme water splitting. a,b, H₂ and O₂ evolution during Z-scheme water splitting reaction with periodic evacuation using Pt(0.1%IMP+0.2%PD)/BaTaO₂N as the HEP, under visible light 420 simulated Conditions: $(\lambda$ (a) and sunlight **(b)**. nm) Pt(0.1%IMP+0.2%PD)/BaTaO₂N (RbCl), 0.1 g; surface-treated WO₃, 0.15 g; 150 mL aqueous NaI solution, 1 mM for **a** and 3 mM for **b**; light source, 300 W Xenon lamp (λ ≥ 420 nm) or solar simulator (AM 1.5G), irradiation area for solar simulator was 7.6 cm²; reaction system, Pyrex top-illuminated vessel connected to closed gas-circulation system with periodical evacuation of gas products at an interval of 30 min. Supplementary Figure S16 | Effect of the redox concentration on Z-scheme water splitting activity. a,b, Gas evolution rate as function of concentration of NaI during Z-scheme water splitting over Pt(0.1%IMP+0.2%PD)/BaTaO₂N as the HEP, under visible light ($\lambda \geq 420$ nm) (a) and simulated sunlight (b). Conditions: Pt(0.1%IMP+0.2%PD)/BaTaO₂N (RbCl), 0.1 g; surface-treated WO₃, 0.15 g; aqueous NaI solution, 150 mL; light source, 300 W Xenon lamp ($\lambda \geq 420$ nm) or solar simulator (AM 1.5G), irradiation area for solar simulator was 7.6 cm²; reaction system, Pyrex top-illuminated vessel connected to closed gas-circulation system with periodical evacuation of gas products. Supplementary Table S6 | Dependence of Z-scheme water splitting under monochromatic light irradiation ($\lambda = 420$ nm) on reaction conditions.^a | Amount photocataly HEP | | | Concentration | Rates of ga
µmo | - AQY ^b / % | | |------------------------|------|-------------|----------------|--------------------|------------------------|-----| | | OEP | of Nal / mM | H ₂ | O ₂ | | | | 1 | 0.05 | 0.10 | 1 | 6.0 | 2.2 | 1.2 | | 2 | 0.10 | 0.15 | 1 | 10.7 | 4.2 | 2.2 | | 3 | 0.15 | 0.25 | 1 | 7.6 | 3.2 | 1.6 | | 4 | 0.10 | 0.15 | 3 | 15.7 | 6.8 | 3.4 | | 5 | 0.10 | 0.15 | 5 | 18.6 | 7.8 | 4.0 | | 6 | 0.10 | 0.15 | 8 | 12.9 | 5.5 | 2.8 | ^a Conditions: Pt(0.1%IMP+0.2%PD)/BaTaO₂N (RbCl) as the HEP; surface-treated WO₃ as the OEP; aqueous NaI solution, 150 mL; light source, 300 W Xenon lamp equipped with a band-pass filter (λ = 420 nm); reaction system, Pyrex top-illuminated vessel connected to closed gas-circulation system with periodical evacuation of gas products. ^b Estimated from the average of H₂ evolution rates and twice O₂ evolution rates. Supplementary Figure S17 | Stability test of Z-scheme water splitting. The reaction was carried out at 6 kPa in the gas flow system with continuous evacuation. Conditions: Pt(0.1%IMP+0.2%PD)/BaTaO₂N (RbCl), 0.1 g; surface-treated WO₃, 0.15 g; 1 mM aqueous NaI solution, 150 mL; light source, 300 W Xenon lamp ($\lambda \ge 420$ nm); reaction system, Pyrex top-illuminated vessel connected to Ar gas-flow system with continuous evacuation of gas products. Supplementary Figure S18 | Effect of background pressure on Z-scheme water splitting activity. a,b, Gas evolution rate for Z-scheme water splitting as function of background pressure in closed circulation system (a) and in gas flow system (b). Conditions: Pt(0.1%IMP+0.2%PD)/BaTaO₂N (RbCl), 0.1 g; surface-treated WO₃, 0.15 g; 1 mM aqueous NaI solution, 150 mL; light source, 300 W Xenon lamp ($\lambda \ge 420$ nm); reaction system, Pyrex top-illuminated vessel connected to closed gas-circulation system with introduction of Ar gas and without evacuation of gas products for a, connected to gas-flow system with continuous Ar gas feed and continuous evacuation of gas products for b. Supplementary Figure S19 | Water formation from H₂ and O₂ in darkness. Conditions: Pt(0.1%IMP+0.2%PD)/BaTaO₂N (RbCl), 0.1 g; surface-treated WO₃, 0.15 g; 1 mM aqueous NaI solution, 150 mL. This experiment was carried out in a closed circulation system containing a stoichiometric mixture of H_2 and O_2 gases (5360 µmol for H_2 and 2760 µmol for O_2). The decreases in H_2 and O_2 were in the stoichiometric ratio of 2 to 1, indicating a water formation reaction. Nearly 90% of the H_2 and O_2 were consumed in 10 h. Supplementary Figure S20 | Time course of Z-scheme water splitting. The Z-scheme water splitting system was constructed with Pt(0.1%IMP+0.2%PD)/BaTaO₂N the HEP, and untreated WO_3 as the OEP. Conditions: as Pt(0.1%IMP+0.2%PD)/BaTaO₂N (RbCl), 0.1 g; untreated WO₃, 0.1 g; 5 mM aqueous NaI solution, 150 mL; light source, 300 W Xenon lamp ($\lambda \ge 420$ nm); reaction system, Pyrex top-illuminated vessel connected to closed gas-circulation system with intermediate evacuation of gas products at 3.5 h illumination. In the redox-mediated Z-scheme water splitting system, reverse reactions including the reduction of oxidized mediators on the HEP and the oxidation of reduced mediators on the OEP compete with the water splitting reaction and reduce the total activity. When I⁻ anions were used as an electron mediator, they were oxidized on Pt-modified BaTaO₂N to form IO₃ and I₃ species^{8,14}. The adsorption and reduction of IO₃ and I₃ species on the untreated WO₃ were less efficient than on the surface-treated WO₃²⁶, and the reduction of remaining IO₃ and I₃ species competed with the H₂ evolution reaction on Pt-modified BaTaO₂N. Therefore, both the H₂ and O₂ evolution rates were low and the stoichiometric ratio was not achieved when untreated WO₃ was used as the OEP. The use of surface-treated WO₃ suppresses the reverse reaction involving redox mediators on Pt-modified BaTaO₂N and helps improve the intrinsic performance of BaTaO₂N in the Z-scheme water splitting system. #### References - Sayama, K., Mukasa, K., Abe, R., Abe, Y. & Arakawa, H. Stoichiometric water splitting into H₂ and O₂ using a mixture of two different photocatalysts and an IO₃/I⁻ shuttle redox mediator under visible light irradiation. *Chem. Commun.* 2416–2417 (2001). - 2. Kato, H., Sasaki, Y., Shirakura, N. & Kudo, A. Synthesis of highly active rhodium-doped SrTiO₃ powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. *J. Mater. Chem. A* 1, 12327–12333 (2013). - 3. Wang, Q. *et al.* Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. *Nat. Mater.* **15**, 611–615 (2016). - 4. Abe, R., Takata, T., Sugihara, H. & Domen, K. Photocatalytic overall water splitting under visible light by TaON and WO₃ with an IO₃⁻/I⁻ shuttle redox mediator. *Chem. Commun.* 3829–3831 (2005). - Maeda, K., Higashi, M., Lu, D., Abe, R. & Domen, K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. *J. Am. Chem. Soc.* 132, 5858–5868 (2010). - Chen, S. et al. Efficient visible-light-driven Z-scheme overall water splitting using a MgTa₂O_{6-x}N_y/TaON heterostructure photocatalyst for H₂ evolution. Angew. Chem. Int. Ed. 54, 8498–8501 (2015). - 7. Qi, Y. *et al.* Redox-based visible-light-driven Z-scheme overall water splitting with apparent quantum efficiency exceeding 10%. *Joule* **2**, 2393–2402 (2018). - 8. Ma, G. *et al.* Visible light-driven Z-scheme water splitting using oxysulfide H₂ evolution photocatalysts. *J. Phys. Chem. Lett.* **7**, 3892–3896 (2016). - 9. Sun, S. *et al.* Efficient redox-mediator-free Z-scheme water splitting employing oxysulfide photocatalysts under visible light. *ACS Catal.* **8**, 1690–1696 (2018). - 10. Iwase, A. *et al.* Water splitting and CO₂ reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoO_x-loaded BiVO₄, and a reduced graphene oxide electron mediator. *J. Am. Chem. Soc.* **138**, 10260–10264 (2016). - 11. Chen, S. *et al.* Metal selenide photocatalysts for visible-light-driven Z-scheme pure water splitting. *J. Mater. Chem. A* **7**, 7415–7422 (2019). - 12. Abe, R., Shinmei, K., Koumura, N., Hara, K. & Ohtani, B. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator. *J. Am. Chem. Soc.* **135**, 16872–16884 (2013). - 13. Higashi, M., Abe, R., Takata, T. & Domen, K. Photocatalytic overall water splitting under visible light using ATaO₂N (A = Ca, Sr, Ba) and WO₃ in a IO₃⁻/I⁻ shuttle redox mediated system. *Chem. Mater.* **21**, 1543–1549 (2009). - 14. Maeda, K., Lu, D. & Domen, K. Solar-driven Z-scheme water splitting using modified BaZrO₃-BaTaO₂N solid solutions as photocatalysts. *ACS Catal.* **3**, 1026–1033 (2013). - 15. Qi, Y. *et al.* Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta₃N₅ as a H₂-evolving photocatalyst. *Chem. Sci.* **8**, 437–443 (2017). - 16. Dong, B. *et al.* Heterostructure of 1D Ta₃N₅ nanorod/BaTaO₂N nanoparticle fabricated by a one-step ammonia thermal route for remarkably promoted solar hydrogen production. *Adv. Mater.* **31**, 1808185 (2019). - Dong, B. *et al.* Synthesis of BaTaO₂N oxynitride from Ba-rich oxide precursor for construction of visible-light-driven Z-scheme overall water splitting. *Dalton Trans*. 46, 10707–10713 (2017). - 18. Matoba, T., Maeda, K. & Domen, K. Activation of BaTaO₂N photocatalyst for enhanced non-sacrificial hydrogen evolution from water under visible light by forming a solid solution with BaZrO₃. *Chem. Eur. J.* **17**, 14731–14735 (2011). - 19. Maeda, K. & Domen, K. Water oxidation using a particulate BaZrO₃-BaTaO₂N solid-solution photocatalyst that operates under a wide range of visible light. *Angew. Chem. Int. Ed.* **51**, 9865–9869 (2012). - 20. Luo, Y. *et al.* Fabrication of single-crystalline BaTaO₂N from chloride fluxes for photocatalytic H₂ evolution under visible light. *Cryst. Growth Des.* **20**, 255–261 (2020). - 21. Zhang, H., Wei, S. & Xu, X. Mg modified BaTaO₂N as an efficient visible-light-active photocatalyst for water oxidation. *J. Catal.* **383**, 135–143 (2020). - 22. Jadhav, S. *et al*. Efficient photocatalytic oxygen evolution using BaTaO₂N obtained from nitridation of perovskite-type oxide. *J. Mater. Chem. A* **8**, 1127–1130 (2020). - 23. Momma, K., & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.* **44**, 1272–1276 (2011). - 24. Cahen, D. & Lester, J. E. Mixed and partial oxidation states. Photoelectron spectroscopic evidence. *Chem. Phys. Lett.* **18**, 108–111 (1973). - 25. Luo, Y. et al. Construction of spatial charge separation facets on BaTaO₂N crystals by flux growth approach for visible-light-driven H₂ production. ACS Appl. Mater. Interfaces 11, 22264–22271 (2019). - 26. Miseki, Y., Fujiyoshi, S., Gunji, T. & Sayama, K. Photocatalytic water splitting under visible light utilizing I_3^-/I^- and IO_3^-/I^- redox mediators by Z-scheme system using surface treated PtO_x/WO_3 as O_2 evolution photocatalyst. *Catal. Sci. Technol.* 3, 1750–1756 (2013).